Zinc Deficiency of zinc reduces leptin, a beneficial hormone that regulates appetite, which is reversed by zinc repletion.^{10,37}

Asparagine This amino acid increases

insulin sensitivity which helps the body store energy in muscle instead of storing it as body fat.^{1,2}

Biotin Boosts

metabolism by improving glycemic control (stabilizes blood sugar) and lowering insulin, a hormone that promotes fat formation.^{3,4,5}

Carnitine

Carries fatty acids into the cell so they can be burned for fuel; Helps reduce visceral adiposity (belly fat).^{6,7}

Calcium Inhibits the formation of fat cells; Also helps oxidize (burn) fat cells.^{8,9,10}

Lipoic Acid Improves glucose uptake into cells, which helps a person burn carbohydrates more efficiently.^{11,12,13}

> **Chromium** Makes the body more sensitive to insulin, helping to reduce body fat and increase lean muscle.^{14,15,16,27,28,4}

Vitamin B5 Taking B5

lowers body weight by activating lipoprotein lipase, an enzyme that burns fat cells. One study linked B5 supplementation to less hunger when dieting.^{17,18}

Magnesium Low

magnesium in cells impairs a person's ability to use glucose for fuel, instead storing it as fat; Correcting a magnesium deficiency stimulates metabolism by increasing insulin sensitivity. Magnesium may also inhibit fat absorption.^{19,20,21}

Glutamine

Reduces fat mass by improving glucose uptake into muscle.^{22,23}

www.SpectraCell.com

Vitamin K

Poor vitamin K status linked to excess fat tissue;Vitamin K helps metabolize sugars.^{35,36}

Vitamin D Deficiency strongly linked to poor metabolism of carbohydrates; Genes that are regulated by vitamin D may alter the way fat cells form in some people.^{8,33,34}

Vitamin E Inhibits pre-fat cells from changing into mature fat cells, thus reducing body fat.^{10,31,32}

Vitamin A

Enhances expression of genes that reduce a person's tendency to store food as fat; Reduces the size of fat cells.^{10,29,30}

Vitamin B3 (Niacin)

Treatment with B3 increases adiponectin, a weight-loss hormone secreted by fat cells; Niacin-bound chromium supplements helped reduced body weight in clinical trials.^{26,27,28}

Copyright 2012 SpectraCell Laboratories, Inc. All rights reserved. Doc 377 08.12

Inositol

WEIGHT

MANAGEMENT

Supplementation may increase adiponectin levels.²⁵ Cysteine

Supplementation with this antioxidant reduced body fat in obese patients.²⁴

REFERENCES

¹Lancha A, Poortmans J, Pereira L. The effect of 5 days of aspartate and asparagine supplementation on glucose transport activity in rat muscle. *Cell Biochem Funct* 2009;8:552-557.

²Marquezi M, Roschel H et al. Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. *Int J Sport Nutr Exer Metab* 2003;13:65-75.

³Larrieta E, de la Vega-Monroy M, Vital P et al. Effects of biotin deficiency on pancreatic islet morphology, insulin sensitivity and glucose homeostasis. *J Nutr Biochem* 2012;4:392-399.

⁴Albarracin C, Fuqua B, Evans J et al. Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. *Diabetes Metab Res* 2008;1:41-51.

⁵Monograph on Biotin. Altern Med Rev 2007;12:73-78.

⁶Bernard A, Rigault C, Mazue F et al. L-carnitine supplementation and physical exercise restore age-associated decline in some mitochondrial functions in the rat. *J Gerontol A Biol Sci Med Sci* 2008;10:1027-1033.

⁷Galloway S, Craig T, Cleland S. Effects of oral L: -carnitine supplementation on insulin sensitivity indices in response to glucose feeding in lean and overweight/obese males. *Amino Acids* 2011;2:507-515.

⁸Rosenblum J, Castro V, Moore C et al. Calcium and vitamin D supplementation is associated with decreased abdominal visceral adipose tissue in overweight and obese adults. *Am J Clin Nutr* 2012;1:101-108.

⁹Zernal M. Role of calcium and dairy products in energy partitioning and weight management. *Am J Clin Nutr* 2004;79(Suppl):S907-S912.

¹⁰Garcia O, Long K, Rosado J. Impact of micronutrient deficiencies on obesity. *Nutr Rev* 2009;10:559-572.

¹¹Teachey M, Taylor Z, Maier T et al. Interactions of conjugated linoleic acid and lipoic acid on insulin action in the obese Zucker rat. *Metabolism* 2003;9:1167-1174.

¹²Zhang Y, Han P, Wu N et al. Amelioration of Lipid Abnormalities by α-Lipoic acid Through Antioxidative and Anti-Inflammatory Effects. *Obesity* 2011;8:1647-1653.

¹³Ansar H, Mazloom Z, Kazemi F et al. ffect of alpha-lipoic acid on blood glucose, insulin resistance and glutathione peroxidase of type 2 diabetic patients. *Saudi Med J* 2011;6:584-588.

¹⁴Kim C, Kim B, Park K et al. Effects of short-term chromium supplementation on insulin sensitivity and body composition in overweight children: randomized, double-blind, placebo-controlled study. *J Nutr Biochem* 2011;11:1030-1034.

¹⁵Lau F, Bagchi M, Sen C et al. Nutrigenomic basis of beneficial effects of chromium(III) on obesity and diabetes. *Mol Cell Biochem* 2008;1-2:1-10.

¹⁶Cefalu W, Rood J, Pinsonat P et al. Characterization of the metabolic and physiologic response to chromium supplementation in subjects with type 2 diabetes mellitus. *Metabolism* 2010;5:755-762.

¹⁷Naruta E, Buko V. Hypolipidemic effect of pantothenic acid derivatives in mice with hypothalamic obesity induced by aurothioglucose. *Exp Toxicol Pathol* 2001;5:393-398.

¹⁸Leung L. Pantothenic acid as a weight-reducing agent: fasting without hunger, weakness and ketosis. *Med Hypotheses* 1995;5:403-405.

¹⁹Takaya J, Higashino H, KobayashiY. Intracellular magnesium and insulin resistance. *Magnes Res* 2004;2:126-36.

²⁰Kishimoto Y, Tani M, Uto-Kondo H et al. Effects of magnesium on postprandial serum lipid responses in healthy human subjects. *Br J Nutr* 2010;4:469-472.

²¹Lima M, Cruz T, Rodrigues L et al. Serum and intracellular magnesium deficiency in patients with metabolic syndrome--evidences for its relation to insulin resistance. *Diabetes Res Clin Pract* 2009;2:257-262.

²²Greenfield J, Farooqi I, Keogh J et al. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. *Am J Clin Nutr* 2009;1:106-113.

²³Prada P, Hirabara S, de Souza C et al. L-glutamine supplementation induces insulin resistance in adipose tissue and improves insulin signalling in liver and muscle of rats with diet-induced obesity. *Diabetologia* 2007;9:1949-59,

²⁴Hildebrandt W, Hamman A, Krakowsi-Roosen H et al. Effect of thiol antioxidant on body fat and insulin reactivity. *J Mol Med* 2004;5:336-344.

²⁵Corrado F, D'anna R, Di Vieste G et al. The effect of myoinositol supplementation on insulin resistance in patients with gestational diabetes. *Diabet Med* 2011;8:972-975.

²⁶Westpahl S, Borucki K, Taneva E et al. Adipokines and treatment with niacin. *Metabolism* 2006;10:1283-1285.

²⁷Rink C, Roy S, Khanna S et al. Transcriptome of the subcutaneous adipose tissue in response to oral supplementation of type 2 Leprdb obese diabetic mice with niacin-bound chromium. *Physiol Genomics* 2006;3:370-379.

²⁸Preuss H, Bagchi D, Bagchi M et al. Effects of a natural extract of (-)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss. *Diabetes Obes Metab* 2004;3:171-180.

²⁹Kameji H, Mochizuki K, Myoshi N et al. β-Carotene accumulation in 3T3-L1 adipocytes inhibits the elevation of reactive oxygen species and the suppression of genes related to insulin sensitivity induced by tumor necrosis factor- α . *Nutrition* 2010;11-12:1151-1156.

³⁰Ribot J, Felipe F, Bonet M el al. Changes in adiposity in response to vitamin A status correlate with changes of PPAR gamma 2 expression. *Obes Res* 2001;9:500-509.

³¹Ohrvall M, Tengblad S, Vessby B. Lower tocopherol serum levels in subjects with abdominal adiposity. *J Intern Med* 1993;234:53-60.

³²Uto-Kondo H, Ohmori R, Kiyose C et al. Tocotrienol Suppresses Adipocyte Differentiation and Akt Phosphorylation in 3T3-L1 Preadipocytes. *J Nutr* 2009;1:51-57.

³³Bailey R, Cooper J, Zeitels K et al. Association of the vitamin D metabolism gene CYP27B1 with type I diabetes. Diabetes 2007;10:2616-2621.

³⁴Ochs-Balcom H, Chennamaneni R, Millen A et al. Vitamin D receptor gene polymorphisms are associated with adiposity phenotypes. *Am J Clin Nutr* 2011;1:5-10.

³⁵Yoshida M, Jacques P, Meigs J et al. Effect of vitamin K supplementation on insulin resistance in older men and women. *Diabetes Care* 2008;11:2092-2096.

³⁶Shea M, Booth S, Gundberg C. et al. Adulthood obesity is positively associated with adipose tissue concentrations of vitamin K and inversely associated with circulating indicators of vitamin K status in men and women. *J Nutr* 2010;5:1029-1034.

³⁷ Jansen J et al. Zinc and diabetes--clinical links and molecular mechanisms. J Nutr Biochem 2009;6:399-417.

www.SpectraCell.com

Copyright 2012 SpectraCell Laboratories, Inc. All rights reserved. Doc 377 08.12

