Carnitine Transports fatty acids into mitochondria; Decreases both mental and physical fatigue in clinical trials. 15,31,32

B Vitamins Necessary for converting food into energy; Cofactors in the mitochondrial

respiratory chain include B1, B2, B3, B5. B6. B12 and Folate.^{8,15,16,26-30}

Vitamin D Low levels are seen in patients with chronic fatigue syndrome; Deficiency causes reduced muscle strength.^{24,25}

Vitamin E Inverse correlation exists between fatigue and vitamin E levels.²³

Vitamin A When cellular levels of vitamin A are low, mitochondrial respiration and ATP production decreases.²²

Vitamin C Assists iron uptake and transport; Precursor to carnitine and several hormones that affect energy levels. Supplementation reduced fatigue in various trials. 15,16,21

Copyright 2012 SpectraCell Laboratories, Inc. All rights reserved. Doc 376 08.12

Chromium

Promotes glucose uptake into cells, helping stabilize blood sugar. 16,33

Zinc Deficiency lowers immunity and may cause muscle fatigue; Involved in several reactions for energy metabolism. 15,34,35

Asparagine Supplementation of this amino acid delayed fatigue during exercise by decreasing the rate at which glycogen was used up; needed for gluconeogenesis, a process that allows glucose to be made from protein to prevent blood sugar from getting too low.^{1,2,3}

Biotin Helps liver utilize glycogen for energy. Animal studies confirm that biotin deficiency causes clinical fatigue.⁴

Glutamine Mental and physical fatigue coincides with reduced levels of this amino acid in various tissues. Supplementation makes muscle more sensitive to insulin, increasing energy levels. 5.6.7

FATIGUE

Serine Counteracts the overproduction of fatigue-causing stress hormones.^{8,9}

causes fatigue due to its role in mitochondrial energy metabolism; therapeutic benefits particularly noticeable in chronic fatigue syndrome. 10,11,12,15

Antioxidants Several studies confirm that oxidative stress exacerbates clinical symptoms of fatigue. Mitochondrial dysfunction (inefficient energy metabolism) can be treated therapeutically with antioxidants such as Selenium, Cysteine, a-Lipoic acid and Glutathione, of which unusually low levels are seen in chronic fatigue patients. 12,16,18,19,20

Magnesium

Required to store energy molecule ATP; Repletion of magnesium in chronic fatigue patients shows clinical improvement in energy levels. 15,16,17

Fructose Intolerance Fatigue

(and hypoglycemia) are classic symptoms of this condition, since it depletes the main form of cellular energy, ATP.^{13,14}

REFERENCES

- ¹Marquezi M, Roschel H et al. Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. *Int J Sport Nutr Exer Metab* 2003;13:65-75.
- ²Lancha A, Recco M et al. Effect of aspartate, asparagine, and carnitine supplementation in the diet on metabolism of skeletal muscle during a moderate exercise. *Physiol Behav* 1995;57:367-371.
- ³Efthivoulou M, Phillips J, Berry M. Abolition of the inhibitory effect of ethanol oxidation on gluconeogenesis from lactate by asparagine or low concentrations of ammonia. *Biochim Biophys Acta* 1995;1244:303-310.
- ⁴Osada K, Komai M et al. Experimental study of fatigue provoked by biotin deficiency in mice. *Int J Vitam Nutr Res* 2004;74:334-340.
- ⁵Jin G, Kataoka Y et al. Changes in plasma and tissue amino acid levels in an animal model of complex fatigue. *Nutrition* 2009:25:597-607.
- ⁶Prada P, Hirabara S et al. L-glutamine supplementation induces insulin resistance in adipose tissue and improves insulin signalling in liver and muscle of rats with diet-induced obesity. *Diabetologia* 2007;50:1949-1959.
- ⁷Greenfield J, Farooqi I et al. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects. *Am J Clin Nutr* 2009;89:106-113.
- ⁸Head K, Kelly G. Nutrients and botanicals for treatment of stress: adrenal fatigue, neurotransmitter imbalance, anxiety, and restless sleep. *Altern Med Rev* 2009;14:114-140.
- ⁹Starks M, Starks S et al. The effects of phosphatidylserine on endocrine response to moderate intensity exercise. J Int Soc Sports Nutr 2008;5:11.
- ¹⁰Mizuno K, Tanaka M et al. Antifatigue effects of coenzyme Q10 during physical fatigue. *Nutrition* 2008;24:293-299.
- ¹¹Maes M, Mihaylova I et al. Coenzyme Q10 deficiency in myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardi. *Neuro Endocrinol Lett* 2009;30:47-476.
- ¹² Logan A, Wong C. Chronic fatigue syndrome: oxidative stress and dietary modifications. *Altern Med Rev* 2001:6:450-459.
- ¹³Guery M, Douillard C et al. Doctor, my son is so tired... about a case of hereditary fructose intolerance. *Ann Endocrinol* 2007;68:456-459.
- ¹⁴Litherland G, Hajduch E et al. Fructose transport and metabolism in adipose tissue of Zucker rats: diminished GLUT5 activity during obesity and insulin resistance. *Mol Cell Biochem* 2004;261:23-33.
- ¹⁵Werbach M. Nutritional strategies for treating chronic fatigue syndrome. *Altern Med Rev* 2000;5:93-108.
- ¹⁶Huskisson E, Maggini S, Ruf M. The role of vitamins and minerals in energy metabolism and well-being. *J Int Med Res* 2007;35:277-289.
- ¹⁷Moorkens G, Manuel Y et al. Magnesium deficit in a sample of the Belgium population presenting with chronic fatigue. *Magnes Res* 1997;10:329-337.
- ¹⁸Maes M, Mihaylova I et al. Not in the mind of neurasthenic lazybones but in the cell nucleus: patients with chronic fatigue syndrome have increased production of nuclear factor kappa beta. *Neuro Endocrinol Lett* 2007;28:456-462.

- ¹⁹Bounous G, Molson J. Competition for glutathione precursors between the immune system and the skeletal muscle: pathogenesis of chronic fatigue syndrome. *Med Hypotheses* 1999;53:347-349.
- ²⁰Nicolson G, Conklin K. Reversing mitochondrial dysfunction, fatigue and the adverse effects of chemotherapy of metastatic disease by molecular replacement therapy. *Clin Exp Metastasis* 2008;25:161-169.
- ²¹Suh S, Bae W et al. Intravenous vitamin C administration reduces fatigue in office workers: a double-blind randomized controlled trial. *Nutr. J.* 2012:11:7
- ²²Acin-Perez R, Hoyos B et al. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. *FASEB J* 2010;24:627-636.
- ²³Vecchiet J, Cipollone F et al. Relationship between musculoskeletal symptoms and blood markers of oxidative stress in patients with chronic fatigue syndrome. *Neurosci Lett* 2003;335:151-154.
- ²⁴Berkovitz S, Ambler G et al. Serum 25-hydroxy Vitamin D Levels in Chronic Fatigue Syndrome: a Retrospective Survey. *Int J Vitam Nutr Res* 2009;79:250-254.
- ²⁵ShinchukL, HolickM. Vitamin D and rehabilitation:improving functional outcomes. Nutr Clin Pract 2007;22:297-304
- ²⁶Heap L, Peters T, Wessely S. Vitamin B status in patients with chronic fatigue syndrome. *J R Soc Med* 1999;92:183-185.
- ²⁷Shimizu T, Hoshino H et al. Anti-fatigue effect of dicethiamine hydrochloride is likely associated with excellent absorbability and high transformability in tissues as a Vitamin B(1). *Eur J Pharmacol* 2010;635:117-123.
- ²⁸Nozaki S, Mizuma H et al. Thiamine tetrahydrofurfuryl disulfide improves energy metabolism and physical performance during physical-fatigue loading in rats. *Nutr Res* 2009;29:867-872.
- ²⁹Engels A, Schroer U, Schremmer D. Efficacy of a combination therapy with vitamins B6, B12 and folic acid for general feeling of ill-health. Results of a non-interventional post-marketing surveillance study. *MMW Fortschr Med* 2008;149 Suppl 4:162-166.
- ³⁰Lundell K, Qazi S et al. Clinical activity of folinic acid in patients with chronic fatigue syndrome. Arzeimittelforschung 2006;56:399-404.
- ³¹Malaguarnera M, Cammalleri L et al. L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: a randomized and controlled clinical trial. *Am J Clin Nutr* 2007;86:1738-1744.
- ³²Vermeulen R, Scholte H. Exploratory open label, randomized study of acetyl- and propionylcarnitine in chronic fatigue syndrome. *Psychosom Med* 2004;66:276-282.
- ³³Cefalu W, Rood J et al. Characterization of the metabolic and physiologic response to chromium supplementation in subjects with type 2 diabetes mellitus. *Metabolism* 2010;59:755-762.
- ³⁴Maes M, Mihaylova I et al. In chronic fatigue syndrome, the decreased levels of omega-3 poly-unsaturated fatty acids are related to lowered serum zinc and defects in T cell activation. *Neuro Endocrinol Lett* 2005;26:745-751.
- ³⁵Cordova A, Alvarez-Mon M. Behaviour of zinc in physical exercise: a special reference to immunity and fatigue. Neurosci Biobehav Rev 1995;19:439-445.
- For more references, go to http://www.spectracell.com/online-library-mnt-fatigue-abstracts/

Copyright 2012 SpectraCell Laboratories, Inc. All rights reserved. Doc 376 08.12

