Antioxidant Status

Oxidative imbalance is prevalent in ADHD patients and likely plays a causative role; Deficiency of glutathione common in ADHD.^{3,4,5,6}

Folate

Low folate status in pregnancy linked to hyperactivity in children; People with the MTHFR(methyl tetrahydrafolate reductase) gene are predisposed to folate deficiency and more likely to have ADHD. ^{1,2}

Vitamin B6

Evidence suggests high dose supplementation of B6 is as effective as Ritalin for ADHD, probably due to its role in raising serotonin levels. ^{7,8,9}

Choline

Precursor to neurotransmitter acetylcholine, which regulates memory focus and muscle control (hyperactivity). ^{24,25,26}

ADHD

Magnesium

Deficiency linked to poor function of the neurotransmitters that control emotion, social reactions, hyperactivity and attention; Synergistic effect with Vitamin B6^{8.9.10}

Glutamine

Precursor for the calming neurotransmitter GABA (gamma-aminobutyric acid) that affects mood, focus and hyperactivity; Disruption of the glutamine-containing neurotransmission systems may cause ADHD. 21,22,23

Zinc

Cofactor for dopamine synthesis which affects mood and concentration in ADHD; Low zinc depresses both melatonin and serotonin production which affect information processing and behavior in ADHD. 11,12,13,14

Serine

Administration of phosphatidylserine with omega 3 fatty acids improved ADHD symptoms (attention scores) significantly better than omega 3 fatty acids alone, suggesting a synergistic effect; Phosphatidylserine increases dopamine levels. ^{18,19,20}

Carnitine

Reduces hyperactivity and improves social behavior in people with ADHD due to its role in fatty acid metabolism; Some consider it a safe alternative to stimulant drugs. 15,16.17

Copyright 2013 SpectraCell Laboratories, Inc. All rights reserved. Doc 388 02.13

REFERENCES

¹Krull R, Brouwers P, Jain N et al. Folate pathway genetic polymorphisms are related to attention disorders in childhood leukemia survivors. J Pediatr 2008;152:101-105.

²Schlotz W, Jones A, Phillips D et al. Lower maternal folate status in early pregnancy is associated with childhood hyperactivity and peer problems in offspring. J Child Psychol Psychiatry 2010;51:594-602.

³Selek S. Savas H, Gergerlioglu H et al. Oxidative imbalance in adult attention deficit/hyperactivity disorder. Biol Psychol 2008;79:256-259.

⁴Dvorakova M, Sivonova M, Trebaticka J et al. The effect of polyphenolic extract from pine bark, Pycnogenol on the level of glutathione in children suffering from attention deficit hyperactivity disorder (ADHD). Redox Rep 2008;11:163-172.

⁵Spahis S, Vanasse M, Belanger S et al. Lipid profile, fatty acid composition and pro- and anti-oxidant status in pediatric patients with attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids 2008;79:47-53.

⁶Bulut M, Selek S, Gergerlioglu H et al. Malondialdehyde levels in adult attention-deficit hyperactivity disorder. J Psychiatry Neurosci 2007;32:435-438.

⁷Coleman M, Steinberg J, Tippett J et al. A preliminary study of the effect of pyridoxine administration in a subgroup of hyperkinetic children: a double-blind crossover comparison with methylphenidate. Biol Psychiatry 1979;14:741-751.

⁸Mousain-Bosc M, Roche M, Polge A et al. Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin B6. I. Attention deficit hyperactivity disorders. Magnes Res 2006;19:46-52.

⁹Mousain-Bosc M, Roche M, Rapin J et al. Magnesium VitB6 intake reduces central nervous system hyperexcitability in children. J Am Coll Nutr 2004;23:545S-548S.

¹⁰Huss M, Volp A, Stauss-Grabo M. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study. Lipids Health Dis 2010;9:105.

¹¹Arnold L, DiSilvestro R. Zinc in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2005;15:619-627.

¹²Yorbik O, Ozdag M, Olgun A et al. Potential effects of zinc on information processing in boys with attention deficit hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:662-667.

¹³Arnold L, Pinkham S, Votolato N. Does zinc moderate essential fatty acid and amphetamine treatment of attention-deficit/hyperactivity disorder? J Child Adolesc Pychopharmacol 2000;10:111-117.

Copyright 2013 SpectraCell Laboratories, Inc. All rights reserved. Doc 388 02.13

¹⁴Dodig-Curkovic K, Dovhanj J, Curkovic M et al. The role of zinc in the treatment of hyperactivity disorder in children. Acta Med Croatica 2009;63:307-313.

¹⁵Arnold L, Amato A, Bozzolo H et al. Acetyl-L-carnitine (ALC) in attention-deficit/hyperactivity disorder: a multi-site, placebo-controlled pilot trial. J Child Adolesc Psychopharmacol 2007;17:791-802.

16Van Oudheusden L. Scholte H. Efficacy of carntine in the treatment o children with attention-deficit hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids 2002;67:33-38.

¹⁷Torrioli M, Vernacotola S, Peruzzi L et al. A double-blind, parallel, multicenter comparison of L-acetylcarnitine with placebo on the attention deficit hyperactivity disorder in fragile X syndrome boys. Am J Med Genet 2008;146:803.812.

¹⁸Kidd P. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev 2007;12:207-227.

¹⁹Vaisman N, Kaysar N, Zaruk-Adasha Y et al. Correlation between changes in blood fatty acid composition and visual sustained attention performance in children with inattention: effect of dietary n-3 fatty acids containing phospholipids. Am J Clin Nutr 2008;87:1170-1180.

²⁰Pellow J, Solomon E, Barnard C. Complementary and alternative medical therapies for children with attention-deficit/hyperactivity disorder (ADHD). Altern Med Rev 2011;16:323-337.

²¹Perlov E, Philipsen A, Hesslinger B et al. Reduced cingulated glutamate/glutamine-to-creatine ratios in adult patients with attention deficit/hyperactivity disorder – a magnetic resonance spectroscopy study. J Psychiatr Res 2007;41:934-941.

²²Carrey N, MacMaster F, Gaudet L et al. Striatal creatine and glutamate/glutamine in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2007;17:11-17.

²³Rusch N, Boeker M, Buchert M et al. Neurochemical alterations in women with borderline personality disorder and comorbid attention-deficit hyperactivity disorder. World J Biol Psychiatry 2010;11:372-381.

²⁴Barth V, Need A, Tzavara E et al. In vivo occupancy of dopamine d3 receptors by antagonists produces neurochemical and behavioral effects of potential relevance to attention-deficit-hyperactivity disorder. J Pharmacol Exp Ther 2013;344:501-510

²⁵English B, Hahn M, Gizer I et al. Choline transporter gene variation is associated with attention-deficit hyperactivity disorder. J Neurodev Disord 2009;1:252-263.

²⁶Kronenberg G, Ende G, Alm B et al. Increased NAA and reduced choline levels in the anterior cingulum following chronic methylphenidate. A spectroscopic test-retest study in adult ADHD. Eur Arch Psychiatry Clin Neurosci 2008;258:446-450.

Additional references at http://www.spectracell.com/online-library-mnt-adhd-abstracts/

